Synthesis of 1,2,3-triazole-4-carboxamides as nucleobase analogues

Anna S. Grumman, Erland P. Stevens

Department of Chemistry, Davidson College, Box 6175, Davidson, NC 28035

Difficulty in developing antiviral drugs

Viruses, such as Herpes, are difficult to fight because they force host cells to replicate the virus. As a result, antiviral drugs must attack viral cells without killing healthy cells. Antiviral drugs must be disguised in order to trick the body while still targeting the virus with extreme specificity.

1,2,3-triazole-4-carboxamides resemble purine nucleobases

Antiviral drugs resemble certain chemical structures in human cells in order to attack viruses without being rejected by the body. 1,2,3-triazole-4-carboxamides (1) are analogues of the purine nucleoside bases guanine (2) and adenine as they share structural and hydrogen-bonding similarities.³

Table of Final Products

14 products were formed, with four possible alkyl chains and four possible carbonyl groups attached to the triazole.

Length of R Chain	Carbonyl Group	Percent Yield of
		Final Compound
2	COOH	83%
2	CO-NH ₂	77%
2	CO-NH-NH ₂	64%
2	CO-NH-OH	62%
3	СООН	
3	CO-NH ₂	78%
3	CO-NH-NH ₂	quant.
3	CO-NH-OH	77%
4	СООН	69%
4	CO-NH ₂	68%
4	CO-NH-NH ₂	73%
4	CO-NH-OH	52%
5	COOH	83%
5	CO-NH ₂	61%
5	CO-NH-NH ₂	56%
5	CO-NH-OH	

HO
$$(CH_2)_Y$$
 $Y = 2, 3, 4, \text{ or } 5$
 $X = OH, NH_2, NH-NH_2, \text{ or } NH-OH$

Structure of final products

Synthetic Route to a Carboxylic Acid

A diol (3) was monobenzylated (4) and then tosylated (5) to form an azide (6). (6) underwent a Cucatalyzed Click reaction⁴ with ethyl propialote (7) to form a triazole (8). (8) was hydrolyzed (9) and then hydrogenated to form a 1,2,3-triazole-4-carboxylic acid (10).

Synthetic Route to an Amide

A diol (3) was monobenzylated (4) and then tosylated (5) to form an azide (6). (6) underwent a Cucatalyzed Click reaction⁴ with methyl propiolate (11) to form a triazole (12). (12) was hydrogenated (13) and then reacted with ammonia to form a 4-carbamoyl-1,2,3-triazole (14).

OH OH OH Na₂CO₃ Ph O (CH₂)Y Ph O (CH₂)Y Ph O (CH₂)Y
$$\frac{CH_2Cl_2}{N}$$
 Ph O (CH₂)Y $\frac{NaN_3}{DMSO}$

Ph O (CH₂)Y $\frac{NaN_3}{N}$ Ph O (CH₂)Y $\frac{NaN_3}{N}$ DMSO

Ph O (CH₂)Y $\frac{NaN_3}{N}$ Ph O (CH₂)Y $\frac{NaN_3}{N}$ DMSO

Ph O (CH₂)Y $\frac{NaN_3}{N}$ Ph O (CH₂)Y $\frac{NaN_3}{N}$ DMSO

$$\frac{NaN_3}{N}$$
 DMSO

Synthetic Route to a Hydrazide

A diol (3) was monobenzylated (4) and then tosylated (5) to form an azide (6). (6) underwent a Cucatalyzed Click reaction⁴ with methyl propiolate (11) to form a triazole (12). (12) was hydrogenated (13) and then reacted with hydrazine to form a 4-aminocarbamoyl-1,2,3-trizaole (15).

Synthetic Route to a Hydroxamic Acid

A diol (3) was monobenzylated (4) and then tosylated (5) to form an azide (6). (6) underwent a Cu-catalyzed Click reaction⁴ with methyl propiolate (11) to form a triazole (12). (12) was hydrogenated (13) and then reacted with hydroxylamine to form a 4-hydroxycarbamoyll-1,2,3-triazole (16).

Future Work

Future work includes testing compounds for antiviral activity through the NIAID antiviral screening program, the NCI 60-line screen program, and commercial screening programs such as the one at Eli Lilly.

The triazole chemistry can be expanded to synthesize ribose analogues, such as 17 and 18.

$$CH_2OH OH$$

$$OH OH$$

$$OH OH$$

$$ribose$$

$$17$$

$$X = NH_2. NH-NH_2, NH-OH$$

References

- I. Tino, J.A.; Clark, J.M; Kirk Field, A.; Jacobs, G.A.; Lis, K.A.; Michalik, T.L.; McGeever-Rubin, B.; Slusarchyk, W.A.; Spergel, S.H.; Sundeen, J.E.; Tuomari, V.; Weaver, E.R.; Young, M.G.; Zahler, R. Synthesis and antiviral activity of novel isonucleoside analogs. *J. Med. Chem.* **1993**, *36*, 1221-1229.
- 2. Golankiewicz B.; Ostrowski T.; Gośliński T.; Januszczyk P.; Seidler J.; Baranowski D.; De Clercq E. Fluorescent tricyclic analogues of acyclovir and ganciclovir. A structure-antiviral activity study. *J. Med. Chem.* **2001**, *44*, 4284–4287.
- 3. Sjöberg, A.H.; Wang, L.; Eriksson, S. Antiviral Guanosine Analogs as Substrates for Deoxyguanosine Kinase: Implications for Chemotherapy. *Antimicrob. Agents Chemother*. **2001**, *45*, 739-742.
- 4. Meldal, M.; Tornøe, C.W. Cu-Catalyzed Azide–Alkyne Cycloaddition. *Chem. Rev.* **2008**, *108*, 2952-3015.

